
NONSTEADY TEMPERATURE FIELD IN THERMOSENSITIVE BODY WITH 
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A method of determining the nonsteady temperature fields in bodies with discon- 
tinuous boundary conditions is proposed, taking account of the temperature de- 
pendence of the thermophysical characteristics. 

It was noted in [i, 2] that nondestructive methods of determining thermophysical char- 
acteristics are based on the solution of two-dimensional nonsteady heat-conduction problems 
with discontinuous boundary conditions of the second kind. The nonsteady temperature fields 
in thin isotropic plates with heat transfer were determined in [3, 4] for the case of discon- 
tinuous boundary conditions of the second kind. In [5], these results were generalized to 
anisotropic plates. These investigations were reported in [6, 7]. These results, with a 
heat-transfer coefficient from the side surfaces of the plates a = 0 (heat-insulated plates), 
lead to expressions for the nonsteady two-dimensional temperature fields in a halfspace and 
a rectangular wedge with heat transfer over a strip region of its boundary surface. Thanks 
to the use of generalized functions, closed solutions that are convenient for investigation 
and common to the whole region of definition are obtained. The thermophysical characteristics 
(TPC) of the given plates are assumed to be independent of the temperature. Such bodies are 
said to be nonthermosensitive, and bodies with temperature-dependent TPC to be thermosensitive 
[81. 

Now consider a thermosensitive layer, at the boundary surface z = 0 of which a discon- 
tinuous boundary condition of the second kind is specified 

%(I) at ( i )  = --q(T)  N ( r ) w h e n z =  0, 
OZ 

where 

A T (r) = s (r - R + h) - -  S (r - -  R - -  h); 

1, ~ > 0 ,  

S (~) = 0,5, ~=0,  is a symmetric unit function [9]. 

0, ~ < 0  
The surface z = I of the layer is assumed to be heat-insulated 

)'.(t) 0t =Owhen z = l .  (2) 
Oz 

The initial temperature and the temperature at infinity are 

%=0 = 0 tlr.~ - 0 (3) 

The heat-conduction equation for determining the nonsteady temperature field in the given 
layer takes the form 

div [~. (t) grad t] ~ c~ (t) t .  (4) 

For many materials [8, i0-13], the thermal diffusivity a is constant or varies only 
slightly as a function of the temperature. In this case, the boundary problem in Eqs. (I)- 
(4) is completely linearized by means of the Kirchhoff variable 

= ! ( z ( ~ ) d ~  (5) 
~,o ~' 
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and takes the form 

ao = _ q(T)_ N (r), a--~--e I = o, 
az ~ o ~o Oz ]~ z 

o! =o = o, ol,.  = o, 

a2~ 1 O0 6-~t~ 6 - - + - - - - +  
Or z r Or OZ 2 a 

Applying an integral Laplace transformation with respect to the time and Hankel trans- 
formation with respect to r to Eqs. (8) and (6), taking account of Eq. (7), and using hand- 
book data [14], it is found that 

(6) 

(7) 

(8) 

dzO 
dZ 2 __ y2-~, (9)  

de .  = lq~(~, R + h ) - - O ( ~ ,  R- -  i01, =0 ,  (10) 
dz  ~=o ~,o az I-,=z 

where 

/ ~ ao  
] /  ~:z s _--=- ! q (1:) exp ( - -  s 0 d-c; ~ = - -  " v =  "- +-h-;$(s) 6 or ' 

(D(~, ~)= -~-'/i(~); ~(~., z, s)= ~i'. re(r, z, Gdo(~.r)exp(--sT)drd'c. 
0 0 

The solution of Eq. (9) with the boundary conditions in Eq. (i0) is written in the form 

~, _ $(~) ch ? (z - -  1) [d) (TE, R Jr- h)-- ci~ (~, g - -  h ) ] .  ( 1 1 )  
Lo? sh 't'l 

If the ring is narrow, then passing to the limit as h § 0 in Eq. (6), taking into account 
that lim N(r)/2h = 6(r- R) [15, 16], and maintaining Q(T) = 2hq(T) constant, it is found 

h-~0 
that 

ao I Q(z) 6(r--R). 
(12)  

After applying Laplace--Hankel transformation to Eq. (12), the result is 

dzd~ ~=0 = Q(s)xo 4 ( ~ R )  

The solution of Eq. (9) for this case is written in the form 

-~_ Q(s)R c h y ( z - - / ) J o ( ~ R )  (13)  
~0Y sh ?l 

P a s s i n g  t o  t h e  l i m i t  a s  l + ~ i n  E q s .  (11)  and  ( 1 3 ) ,  t h e  e x p r e s s i o n  i s  o b t a i n e d  f o r  t h e  
t r a n s f o r m  o f  t h e  K i r c h h o f f  v a r i a b l e  f o r  a h a l f  s p a c e  

= $(S)_exp (-- ~,,z)[(D (~, R ~- h) -- cD(~, R -- h)], (14) 

~ - =  O (s)____RR exp ( - -  Tz) ]o (~_R) (15)  

R e v e r t i n g  t o  t h e  o r i g i n a l  f r o m  t h e  t r a n s f o r m  i n  Eqs .  (11)  and  ( 1 3 ) - ( 1 5 )  and  t a k i n g  a c -  
c o u n t  o f  h a n d b o o k  d a t a  [ 1 7 ,  1 8 ] ,  t h e  f o l l o w i n g  e x p r e s s i o n  i s  o b t a i n e d  f o r  t h e  K i r c h h o f f  v a r i -  
a b l e  i n  an  a n n u l a r  h e a t i n g  r e g i o n  o f  a r b i t r a r y  w i d t h  2h and  i n  t h e  c a s e  o f  h e a t i n g  o v e r  a 
n a r r o w  r i n g  f o r  a l a y e r  and  a h a l f s p a c e ,  r e s p e c t i v e l y  

al ~ =  z-# q(~-~0)o3 2l ~ [~(T0 R _ ) - -  (To, R+)] d~:o, (16) 
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where 

2Xol. 21 
0 

a% .~exp (--f~ - -  m) Io (2 V'fl-~) d__~, 
l 2 ] TO 

8 =  �9 7 - [  ZoV{ V _k_ q(~--*o) 

0 

exp ( - -  b) [q~ (%, R_) - -  ~o (%, R+)] dTo, 

8 _  

.g 

R J'Q (T -- To) exp ( - -  
2Zo V ~  

0 

Q - ,o - b) Io (2 V ~ )  - -  
dTo 
T 3 / 2  ' 

(17) 

(18) 

(~9) 

If Eqs. 

~(*o, ~) 
h = O  

R 2 ~ =  .; 
4a% 

( l l )  and (14)  r e m a i n  i n  

bok+ ( 2) 
~ ( k + l )  l 2Fx - - k ,  - - l - - k ;  1; - ~ -  ; 

r 2 z 2 
�9 - -  b (o : - - ,  b =  , o=  - -  

4a% 4a% 

integral form 

R+ 

~ =  $(S)~o? ch ?(Z--sh?l l) ~roJo(~ro)dro, 
R_ 

R+ j, 
70 = q(s) exp (-- ~lz) roJo (~ro) dro, 

R-- 

inversion from the transform to the original in Eqs. 
sions for the Kirchhoff variable 

(20) and (21) 

8 _ 

R• R + h; 

4aTo 

(20) 

(2i) 

leads to simpler expres- 

~ ,o,O( ~,ol q - -  3 - -  
0 

z aT~ i [J ( Q - ,  co) -- J ( f l+ ,  (o)1 dT o, 
2 l '  fz / (22) 

8 = -~-  x o V ~  
0 

w h e r e  J (~, (o) = 1 -- j 'exp ( - -  (o - -  r l o (2 ]/O)o(o)d(o o 
0 

~+ = R2+/4aTo. 

At t h e  s u r f a c e  o f  t h e  l a y e r  and t h e  h a l f s p a c e  z = O, t h e  K i r c h h o f f  v a r i a b l e  f o r  t h e  
case of an arbitrary width and a narrow ring takes the form, respectively 

ko---- T- q ( T - - % ) ~ a  O, 12 / (24) 
0 

exp (--  b) [J (Q_, o)) - -  J (Q+, m)] dTo, 

is a fundamental function [i0]; mo = r~/4aTo; 

Ojz=o---- R Q ( T - - % ) O s  O, exp(--f~--cO)Io(21/~oco), d% (25) 
2~oI % ' 

0 

81z= 0 

T 

1/a ___~_ ~ q(~--~o) 
0 

[J (fl_, m) -- J (Q+, co)] d'%, (26) 

2X o V ~ a  Q (T - -  %) exp (--  Q - -  o~) ie (2 1/~--~) dT~ 
, .C3012 " 

0 

(27) 
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The solution of the problem for nonthermosensitive regions is obtained from Eqs. (16)- 
(19), (22), and (23) by replacing ~, %o by t, %. In particular, the following expression is 
obtained at the surface of a halfspace subjected to the action of a nonsteady heat flux over 
an annular region of arbitrary width 

tlz=o=/--~ j" q(~--*o)%.)/~ [J (Q_, m)-- J (Q+, m)] dTo. (28) 

0 

For this case, the solution of the problem at the surface of a halfspace was found in [2] by 
another method, in a different form. 

Passing to the limit as R_ * 0 in Eqs. (24), (26), and (28), a solution corresponding to 
heating of a halfspace by a heat flux of intensity q(T) over a round region of radius R+ is 
obtained. In particular, as R_ + 0, Eq. (26) gives 

@Iz=o = q (T -- To) 

0 

The Kirchhoff variable at the points r = 0, r = R on the surface of the halfspace takes 
the form 

@o= 
0 

(30) 
r -7 -  C (T-- ~o) 

O 

where J (~+, 0) = exp (-~q+). 

It follows from Eq. (27) in the model of a narrow ring at the point r = 0 that 

R {~ Q (~ - -  To) 
@o= 2~,oV-~-- ~ j ~/2 exp ( -  f2) d%. (31) 

0 

If the heat flux is changed at the initial instant by some amount q0, and then remains 
constant, the following equations replace Eqs. (30) and (31) 

~1,r - -~-[exp(-- f~*)--exp(-- f2~)]  + if -!-+ eric V-~{'*~-- R--z- erfcV~_* } (32) qo f ~a 
@~ I V  2 -' 2 - ' 

@o= Qo erfc] /~7,  (33) 
~o 

where 

~ - -  4a~R~ ; ~ , ~  4a~ R2 ; Qo=2qoh; erfc~ = l - - e r f ~ .  

I n t r o d u c i n g  t h e  d i m e n s i o n l e s s  v a r i a b l e s  @ = @oXo/Rqo, Fo = az/R 2, e = 2h/R, d i  = 1 i e / 2 ,  
Eqs. (32) and (33) are written in the form 

,) d+)l d+ d 
4Fo - -  exp , 4Fo + d+eric 2 ~  d_erfc~,2Vff6 (34) 

I (35) 
O = e eric 2~ Fo 

If the Kirchhoff variable is known, the temperature may be found from it by the method 
proposed in [19]. This method allows the temperature to be expressed in terms of the Kirch- 
hoff variable for any law of variation in the thermal conductivity as a function of the tem- 
perature. For some steels, however, the thermal conductivity varies linearly with tempera- 
ture [20, 8], and hence the temperature at the coordinate origin is expressed in terms of the 
Kirchhoff variable O in the form 

1075 



oV , I , t I' 
0,02 o,, .o,< 

Fig. i. Temperature variation as a func- 
tion of e according to the accurate (curve 
i) and approximate (curve 2) model: a) 
thermosensitive body; b) nonthermosensi- 
tive body. 

T = . , ~  1 
-- (1-- V 1-2kO) ,  (36) 

tp  k 

where  k = 0 . 1 3 2 ,  tp  = qoR/ko i s  t h e  r e f e r e n c e  t e m p e r a t u r e ,  / o = t J ~ g .  

C a l c u l a t i o n s  h a v e  b e e n  u n d e r t a k e n  Us ing  Eq. (36),  with accura te  -- Eq. (34) - and a p p r o x -  
i m a t e  -- Eq. (35) -- expressions for 0 when Fo = 0.25; the results are shown in Fig. i, from 
which it follows that, when e ~-0.2, the results corresponding to the accurate and approximate 
models coincide. Taking account of the temperature dependence of the TPC in this case has 
little influence on the temperature distribution. 

For a nonthermosensitive halfspace, replacing ~, %o in Eqs. (32) and (33) by t, % gives 
solutions corresponding to arbitrary and narrow heating rings 

F q~ 

I+ ~-~-- i+  5 -  1 
+ 2 e r i c _ _  

2 2 ]/-F-~ ! 

+ 
4Fo --exp 4Fo 

8 8 
| - -  - -  

2 eric 2,}=2R -~F (Fo), 
2 2 ]/F-o . 

(37) 

to= Oo eric 1 2]/-F0 ' (38) 

With steady heat conditions (Fo + ~), both solut ions take the form 

t~= Qo (39) 

Considering the practical aspect of the use of the solutions obtained in Eqs. (37) and 
(38), it may be noted that these solutions are simple expressions, in which an explicit de- 
pendence of the temperature on a whole set of TPC of the given semiinfinite body is seen. 
This permits nondestructive monitoring of the TPC of materials over a broad temperature range 
in which the TPC do not change as a function of the temperature. To determine the whole com- 
plex, there is no need to introduce temperature sensors in the internal volume of the given 
sample and, in addition, the temperature measurements are recorded outside the region of 
action of the heater. Suppose that two temperature measurements tt and t2 are recorded at 
the coordinate origin at times ~, and 2zx. Then according to Eqs. (37) and (38) 

where Fo, : aT,/R 2. 

I 
eric - -  

tx �9 (For) tt 2 ]/'F-'o~ (40) 
1 

t~ ~ (2Fo0' t2 eric. 2 ']/2Fo[ ~ 

1076 



It is simple to plot a graph from Eq. (40) and find Fol. Knowing Fox and Tx, the thermal 
diffusivity is determined with a specified R 

a----- .... Fol R~" (41) 
%'i 

Since Fox has been found, the thermal conductivity at specified values of qo and R is deter- 
mined 

~, = 2 -qo. R/F (Fal), ;~ = Qo erfc 1 
tl tl 2VFo, 

If a and X have been determined, the volume specific heat is found from the well-known 
formula 

co=  ~ "  (42) a 

The TPC may also be determined as follows. Recording the temperature in steady thermal 
conditions, the thermal conductivity is determined from Eq. (39) 

L = Q (43) 

Plotting graphs of the temperature variation as a function of Fo from Eq. (37) or (38) 
with % in the form in Eq. (43), and measuring the temperature t: at time ~x, the value of Fox 
corresponding to tx is found from the graph. Since Fox and ~x are known, the thermal dif- 
fusivity a is determined from Eq. (41). Knowing a and %, the volume specific heat is found 
from Eq. (42). 

For thermosensitive materials with temperature-independent thermal diffusivity, the fol- 
lowing method may be proposed for determining the TPC. Since a is independent of the temper- 
ature over the whole range of temperature variation (including high and low temperatures), it 
may be determined from Eq. (41), corresponding to the temperature range in which all the TPC 
remain constant. Differentiating the Kirchhoff variable in Eq. (5) and its form in Eq. (35) 
with respect to the time, comparing the results when z = 0, r = 0, and taking into account 
that 

~, (to) = ac~, (to) (44) 

the following expression for the volume specific heat is obtained 

Qo exp - -  ~ 4 F o  (45)  

co (to) = ioRZ 2 v / ~ F o  3/ 2 

I n  this expression, the thermal diffusivity a takes the form in Eq. (41), and the heating 
rate to is determined as follows. After recording the temperature measurements at the coord- 
inate origin throughout the whole heating process of the sample, a graph of the variation in 
temperature to over time is plotted. Determining Cv(to), the thermal conductivity is ob- 
tained from Eq. (44). 

Consider also the case when a time-variable heat flux of intensity 

B 
q (T) ::: s;_ (T) ( 4 6 )  

is transferred through a narrow ring; here B = const is a constant of the probe. 

Substituting Eq. (46) into Eq. (31), and using handbook data [14], it is found that 

B~ exp ( - -Q*) ,  ( 47 )  
8o :: Zo I/------7- 

where Bo = 2hB is the reduced probe constant. 

For a nonthermosensitive body 

l,, ( ' 0  .... Be_ exp (-- ~q*). 
)d / T 
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For arbitrary multiple times nT and 2nT, it follows that 

to(2nr) _ 1 e x p (  I ' 
to (nT) I/2 ~ 8-V~on ,)" 

Hence, the Fourier number is determined 

Fo=l/8nln[V"2to(2nT)] ' lo(n'r)  

and then the thermal diffusivity 

and the thermal conductivity 

R zF~ ( 4 8 )  a 
T 

Bo e x p (  1 ) 
I" xto (x) 4Fo 

For thermosensitive bodies, we proceed analogously to the previous case of heating. 
Differentiating the Kirchhoff variable in Eq. (5) when z = O, r -- 0 and its form in Eq. (47) 
with respect to the time and comparing the results , the thermal conductivity is found to be 

~(/o) -- 2 ~ "  2Fo , i o ' 

where the thermal diffusivity takes the form in Eq. (48), and the heating rate ~o is found 
analogously to the preceding case of heating. Determining the thermal conductivity in this 
way, the volume specific heat is found from Eq. (44). 

NOTATION 

k(t), thermal conductivity; ko, reference thermal conductivity; Cv(t) , volume specific 
heat; Jv(~), Bessel function of the first kind of order v = 0, i; Io(~), modified zero-order 
Bessel function of the first kind; 6(C), Dirac delta function; 2Fx(--k, --I, --k; i; r2/c2), 
Gauss hypergeometric function; os(v, x), theta function; erfc C, probability integral; s, 
parameter of integral Laplace transformation; E, parameter of integral Hankel transformation; 
Q(x), reduced heat flux density; q(T), heat flux density. 
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A METHOD FOR THE APPROXIMATE SOLUTION OF A TWO-PHASE STEFAN 

PROBLEM WITH REVERSE MOTION OF THE FRONT 

R. I. Medvedskii UDC 536.42:551.34 

Determination of the trajectory of a phase transition front moving in a forward or 
reverse direction is reduced to the solution of an ordinary differential equation. 
A numerical check of the results shows the method to be highly accurate. 

In the design of various apparata and structures, for example, wells in regions con- 
taining frozen rocks, the operation of which leads to a change in the aggregate state of the 
material in the surrounding medium, one is obliged to make numerous calculations of the 
motion of a phase transition boundary. Use of difference methods [1-3] for these purposes 
leads to the expenditure of a large amount of computer time, particularly in the case in 
which the process involves an infinite region. In this situation expenditures of computer 
time increases most perceptibly when solving problems involving a reverse front owing to the 
fact that the boundary of the computational domain must be moved especially far away. Reduc- 
tion of an infinite domain to a finite one through a change of coordinates, for example, 
through use of the method indicated in [4], does not in practice decrease the volume of cal- 
culations. Moreover, as computational practice shows, difference methods cease to be suit- 
able when the temperature of the initial phase is considerably below or above the tempera- 
ture of the transition phase and the development of the process proceeds at extremely slow 
rates. Under these circumstances the role of approximate methods in carrying out engineering 
calculations is enhanced, particularly methods based on L. S. Leibenzon's integral formula- 
tion of the problem [5, 6]. This formulation, when used with suitable approximations of tem- 
perature profiles, makes it possible to obtain acceptable accuracy in determining the dynamics 
of the front of phase transitions and, in the first place, is interesting for practical 
applications. The version of the integral balance method presented in [6] is more effective, 
in this respect, than that given in [5] since in it terms not specified by the boundary con- 
ditions were excluded. This exclusion was effected in [6] by applying an operation of double 
integration; however, as shown in [7], the same result can be obtained by the use of Green's 
transformation. This modified version of the integral balance method, when applied to a one- 
phase problem, guarantees high accuracy in replacing the true temperature distribution by a 
quasistationary one, even for large Stefan numbers [7]. Obviously, this conclusion can also 
be carried over to the case of the two-phase problem since in the thermal balance integral 
the contributions from each of the phases are taken into account independently of one 
another. 

In what follows, a modified integral balance method is developed for the case in which 
the motion of the phase front commences after a preliminary initial heating of the region 
and also when its forward motion changes to a reverse motion after thermal action ceases. 
In all these cases the trajectory of the front is described by a first order ordinary dif- 
ferential equation. 

J 

i. First of all, we obtain the differential equation for the case of an exterior single- 
phase Stefan problem with convective heat exchange at the moving boundary. After dimensional- 
ization, this problem may be reduced to solving the heat-conduction equation in the region 
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